January 15, 2020
Sevgi, M. and Diaconescu, A.O. and Henco, L. and Tittgemeyer, M. and Schilbach, L.


Background The autistic spectrum is characterized by profound impairments of social interaction. The exact subpersonal processes, however, that underlie the observable lack of social reciprocity are still a matter of substantial controversy. Recently, it has been suggested that the autistic spectrum might be characterized by alterations of the brain’s inference about the causes of socially relevant sensory signals. Methods We used a novel reward-based learning task that required integration of nonsocial and social cues in conjunction with computational modeling. Thirty-six healthy subjects were selected based on their score on the Autism-Spectrum Quotient (AQ), and AQ scores were assessed for correlations with cue-related model parameters and task scores. Results Individual differences in AQ scores were significantly correlated with participants’ total task scores, with high AQ scorers performing more poorly in the task (r = −.39, 95% confidence interval = −0.68 to −0.13). Computational modeling of the behavioral data unmasked a learning deficit in high AQ scorers, namely, the failure to integrate social context to adapt one’s belief precision—the precision afforded to prior beliefs about changing states in the world—particularly in relation to the nonsocial cue. Conclusions More pronounced autistic traits in a group of healthy control subjects were related to lower scores associated with misintegration of the social cue. Computational modeling further demonstrated that these trait-related performance differences are not explained by an inability to process the social stimuli and their causes, but rather by the extent to which participants consider social information to infer the nonsocial cue.

Contact us!

Email Dr. Diaconescu at

© 2023 Cognitive Network Modelling